JOM 22716PC

Preliminary communication

Adduct between quadricyclane and $(\eta^{5}$ -cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III): formation and structure

Masatsugu Kajitani, Hiroshi Hatano, Tetsuji Fujita, Tetsuyuki Okumachi, Hirotaka Nagao, Takeo Akiyama and Akira Sugimori

Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo 102 (Japan)

(Received January 10, 1992)

Abstract

The reaction of $(\eta^5$ -cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III) (1) in quadricyclane (Q) at 90°C gives 1:1 adducts of 1 and Q. The main adduct (40% yield) has a unique structure, in which the 5-and 7-positions of norbornene are bonded to Co and S of 1. A mechanism of the formation of the adduct (by the use of deuterium-labeled Q), including a skeletal rearrangement of Q, is proposed.

The square-planar bis(1,2-ethylenedithiolato)metal complexes (metal: Ni, Pd, and Pt) are known to form 1:1 adducts with dienes, such as norbornadiene (NBD) [1], and with strained molecules, such as quadricyclane [1,2]. In these adducts, the S atoms of different dithiolene rings are bridged by the norbornene-5,6-diyl group. However, the study of these adduct formation of the dithiolato metal complexes with NBD or Q has been limited only to bis(dithiolato)metal complexes, and no investigation has been done on the mono(dithiolato)metal complexes.

Here we report the first example of a new type of insertion of strained hydrocarbon into the metal-sulfur bond, evidenced by the X-ray structural characteristics of the adduct, and the mechanism of its formation. We found that $(\eta^{5}$ -cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III) (1) shows unique reactivities towards Q: The complex 1 forms 1:1 adducts with Q and catalyzes the isomerization of Q to NBD. The manner of the addition reaction of Q to 1 is quite different from that to bis(dithiolato)metal complexes. Under the same conditions, 1 does not react with norbornadiene (NBD).

Correspondence to: Dr. M. Kajitani or Dr. A. Sugimori, Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioi-cho 701, Chiyoda-ku, Tokyo 102, Japan.

Preparation of 2. The free complex 1 was synthesized by Heck's method [3]. The free complex 1 (50 mg, 1.9×10^{-4} mol) was placed in a Schlenk-tube under an argon and quadricyclane (Q) (5 cm³, 5×10^{-2} mol) was added. The mixture was then heated at 90°C for 3 h. After the reaction, excess Q was removed under reduced pressure and the residue was chromatographed on silica-gel (Wako-gel C-300; eluent, $C_6H_{14}/CH_2Cl_2 = 1/1$, v/v). Unreacted 1 was recovered from the first fraction (26%). The adduct 2 was obtained from the second fraction and the other two adducts were obtained from the third fraction. After evaporation of the solvents, 2 was obtained as brown powdery solid (27.0 mg) in 40% yield. Pure 2 was obtained from recrystallization from ethanol-benzene (4/1, v/v) at -30° C. Dark purple needles [m.p. 160–167°C (decomp)]. Anal. Found: C, 60.48; H, 4.99. $C_{18}H_{17}CoS_2$ calcd.: C, 60.66; H, 4.81%.

Structure of 2. The structure of 2 was determined by single-crystal X-ray analysis [4]. The ORTEP drawing of 2 is given in Fig. 1, together with some selected bond angles and the bond distances of 2.

Adduct 2 has a unique structure, as described in the following two points: (1) the hydrocarbon moiety bridges between metal (Co) and sulfur (S) of the metalladithiolene ring without breaking the Co-S bond (Co-S(1) = 2.201(2) Å, Co-S(2) =

Fig. 1. ORTEP drawing of adduct 2 (Thermal ellipsoids at 50% probability; H atoms are omitted for clarity). Selected bond distances (Å) and bond angles (*): Co-S(1), 2.201(2); Co-S(2), 2.238(2); Co-C(5), 2.031(4); S(1)-C_b(1), 1.788(5); S(2)-C_b(2), 1.749(5); S(1)-C(7), 1.839(4); C_b(1)-C_b(2), 1.390(6); C(5)-C(6), 1.550(7); C(2)-C(3), 1.294(8); S(1)-Co-S(2), 91.7(1); S(1)-Co-C(5), 83.3(1); S(2)-Co-C(5), 95.2(1); Co-S(1)-C_b(1), 102.8(1); Co-S(2)-C_b(2), 101.8(2); Co-S(1)-C(7), 100.1(2); S(1)-C_b(1)-C_b(2), 118.6(3); S(2)-C_b(2)-C_b(1), 122.4(4); C(1)-C(7)-C(4), 94.2(4).

2.238(2) Å) (This is the marked difference between the cases of 2 and of reported bis(dithiolato)metal complexes (M = Ni, Pd, and Pt) [1,2] in which the hydrocarbon bridges between two sulfur atoms of two different dithiolene rings), and (2) in adduct 2, Co and S are bridged by C(5)(edge carbon) and C(7)(bridge carbon) of C_7H_8 in norbornene form.

Adduct 2 has a piano-stool structure. The central metal is coordinatively saturated, in contrast with the penta-coordinative structure of the free complex 1. The dithiolatometal ring is folded at two sulfur atoms and the angle of the planes consisting of metal-S-S and of S-S-C-C is 16° for 2.

Spectral data of 2. The following spectral data of adduct 2 can be reasonably assigned according to the structure determined by single-crystal X-ray analysis. ¹H NMR(270 MHz, CDCl₃, TMS): $\delta = 1.46$ (dd, 1H, H_{6-endo}, J_{6-endo-5} = 6.8, J_{gem} = 14.3 Hz), 2.09 (dd, 1H, H_{6-exo}, J_{6-exo-1} = 4.6, J_{gem} = 14.3 Hz), 2.70 (d, 1H, H₇, J₇₋₁ = 1.9 Hz), 2.77 (ddd, 1H, H₁, J₁₋₇ = 1.5, J₁₋₂ = 3.0, J_{1-6-exo} = 4.6 Hz), 3.40 (br. s, 1H, H₄), 3.70 (dd, 1H, H_{5-endo}, J₅₋₄ = 1.1, J_{5-6-endo} = 6.8 Hz), 4.98 (s, 5H, C₅H₅), 5.65 (dd, 1H, H₃, J₃₋₄ = 3.0 J₃₋₂ = 5.7 Hz), 5.94 (dd, 1H, H₂, J₂₋₁ = 3.0, J₂₋₃ = 5.7 Hz), 6.77 (td, 1H, H at C_b(4), J = 7.5 Hz, J = 1 Hz), 6.96 (td, 1H, H at C_b(5), J = 7.5 Hz, J = 1 Hz), 7.28 (dd, 1H, H at C_b(3), J = 7.5 Hz, J = 1 Hz), and 7.55 (dd, 1H, H at C_b(6), J = 7.5 Hz, J = 1 Hz). ¹³C{¹H}MR (67.94 Hz, CDCl₃): $\delta = 27.0$ (s, C(5) of C₇H₈), 39.9 (C(6) of C₇H₈), 46.6 (C(1) of C₇H₈), 58.5 (C(4) of C₇H₈), 77.2 (C(7) of C₇H₈), 87.2 (C₅H₅), 121.3 (C_b(4)), 128.5 (C_b(5)), 129.3 (C(3)(olefinic) of C₇H₈), 129.4 (C_b(6)), 130.7 (C_b(3)), 133.3 (C_b(1)), 134.6 (C(2)(olefinic) of C₇H₈), and 159.5 (C_b(2)). MS (70 eV): m/z 356 (M^+ , 4%), and 264 ($M^+ - C_7H_8$, 100%). UV-Vis (CH₂Cl₂): λ_{max} (nm) (log ϵ) 235 (4.17), 278 (4.25), 323 (4.02), 435 (3.07), and 519 (2.96).

Mechanism of adduct formation. Skeletal carbon rearrangement or shift of hydrogen (or hydride) should take place to form 2 from Q. For the elucidation of the reaction mechanism we prepared deuterium-labeled quadricyclane as follows: the compound was prepared by a Diels-Alder reaction of cyclopentadiene- d_6 (deuterium-content, 60%) with *trans*-1,2-dichloroethylene [5], followed by dechlorination [6] and cyclization [7] according to literature methods. The deuterated Q has 70% of ¹H content (averaged content) at the edge positions (marked as \bigcirc in Scheme 1), and 39% ¹H content (averaged content) at the bridge and the bridgehead positions (marked as \triangle in Scheme 1). The analysis of ¹H NMR spectra of the adducts from deuterated Q and 1 gives the following results: (1) two geminal

Scheme 1.

Scheme 2.

hydrogens at the edge (bonded to C(6)) in adduct 2 have the same ¹H content as that at the bridge in the deuterated Q and (2) two bridgehead hydrogens have different ¹H contents. These results strongly suggest that only one skeletal rearrangement is involved and that no hydrogen atom shift takes place in the formation of the adducts. The addition of Q to 1 can be described as the following stepwise process (Scheme 2): (1) the nucleophilic attack of Q to the metal results in the formation of Co–C bond, carbenium ion in the C₇H₈ moiety, and negatively charged metalladithiolene ring; and (2) the skeletal carbon rearrangement occurs to form a more stabilized carbenium ion, which forms a bond with a negatively charged sulfur atom of the dithiolene ring. The mechanism in which Q approaches 1 from the 4-membered ring-side can be excluded, as the 4-membered ring-side approach requires the shift of a hydrogen atom to produce 2.

Acknowledgements. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas on Organic Unusual Valency (No. 02247102) and a Grants-in-Aid for Scientific Research (Nos. 02640406 and 03640464) from the Ministry of Education, Science and Culture of Japan, and by the Asahi Glass Foundation.

References and notes

- 1 G.N. Schrauzer and V.P. Mayweg, J. Am. Chem. Soc., 87 (1965) 1483.
- 2 M. Kajitani, M. Kohara, T. Kitayama, T. Akiyama and A. Sugimori, J. Phys. Org. Chem., 2 (1989) 131.
- 3 R.F. Heck, Inorg. Chem., 7 (1968) 1513.
- 4 Crystal data for adduct 2 (C₁₈H₁₇S₂Co), Formula weight 356.37: triclinic, space group $P\bar{1}$, a = 10.722(4), b = 12.518(5), c = 5.980(3) Å, $\alpha = 93.70(4)$, $\beta = 94.62(4)$, $\gamma = 111.18(3)^{\circ}$, U = 742.2(6) Å³, Z = 2, $D_c = 1.595$ g cm⁻³, $D_m = 1.572$ g cm⁻³, $\mu = 14.125$ cm⁻¹ for Mo- K_{α} , Observed reflections 2467, R = 0.0464; $R_w = 0.0482$, F(000) 736, $2\Theta_{max} = 60.0^{\circ}$, Crystal dimensions $= 0.12 \times 0.12 \times 0.20$ mm, total reflections = 4862, Indep. Reflect. = 3084, Obsd.Criteria = $F_0 \ge 3\sigma(F_0)$, No. of Param. = 259. Apparatus used RIGAKU AFC-5, Mo- K_{α} ($\lambda = 0.71068$ Å), ω scan technique.
- 5 L. Schmerling, J.P. Luvisi and R.W. Welch, J. Am. Chem. Soc., 78 (1956) 2819.
- 6 R.K. Summerling and R.R. Umhoefer, J. Am. Chem. Soc., 61 (1939) 3016.
- 7 G.S. Hammond, P. Wyatt, C.D. Deboer and N.J. Turro, J. Am. Chem. Soc., 86 (1964) 2532.