Adduct between quadricyclane and (η^{5}-cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III): formation and structure

Masatsugu Kajitani, Hiroshi Hatano, Tetsuji Fujita, Tetsuyuki Okumachi, Hirotaka Nagao, Takeo Akiyama and Akira Sugimori
Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioi-cho 7-1, Chiyoda-ku, Tokyo 102 (Japan)
(Received January 10, 1992)

Abstract

The reaction of (η^{5}-cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III) (1) in quadricyclane (Q) at $90^{\circ} \mathrm{C}$ gives $1: 1$ adducts of 1 and Q . The main adduct (40% yield) has a unique structure, in which the 5 and 7-positions of norbornene are bonded to $C o$ and S of 1. A mechanism of the formation of the adduct (by the use of deuterium-labeled Q), including a skeletal rearrangement of Q, is proposed.

The square-planar bis(1,2-ethylenedithiolato)metal complexes (metal: Ni, Pd, and Pt) are known to form 1:1 adducts with dienes, such as norbornadiene (NBD) [1], and with strained molecules, such as quadricyclane [1,2]. In these adducts, the S atoms of different dithiolene rings are bridged by the norbornene-5,6-diyl group. However, the study of these adduct formation of the dithiolato metal complexes with NBD or Q has been limited only to bis(dithiolato)metal complexes, and no investigation has been done on the mono(dithiolato)metal complexes.

Here we report the first example of a new type of insertion of strained hydrocarbon into the metal-sulfur bond, evidenced by the X-ray structural characteristics of the adduct, and the mechanism of its formation. We found that (η^{5}-cyclopentadienyl)(1,2-benzenedithiolato)cobalt(III) (1) shows unique reactivities towards Q : The complex 1 forms $1: 1$ adducts with Q and catalyzes the isomerization of Q to NBD. The manner of the addition reaction of Q to 1 is quite different from that to bis(dithiolato)metal complexes. Under the same conditions, 1 does not react with norbornadiene (NBD).

[^0]

Preparation of 2. The free complex 1 was synthesized by Heck's method [3]. The free complex $1\left(50 \mathrm{mg}, 1.9 \times 10^{-4} \mathrm{~mol}\right)$ was placed in a Schlenk-tube under an argon and quadricyclane (Q) ($5 \mathrm{~cm}^{3}, 5 \times 10^{-2} \mathrm{~mol}$) was added. The mixture was then heated at $90^{\circ} \mathrm{C}$ for 3 h . After the reaction, excess Q was removed under reduced pressure and the residue was chromatographed on silica-gel (Wako-gel $\mathrm{C}-300$; eluent, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1, v / v$). Unreacted 1 was recovered from the first fraction (26%). The adduct 2 was obtained from the second fraction and the other two adducts were obtained from the third fraction. After evaporation of the solvents, 2 was obtained as brown powdery solid (27.0 mg) in 40% yield. Pure 2 was obtained from recrystallization from ethanol-benzene ($4 / 1, \mathrm{v} / \mathrm{v}$) at $-30^{\circ} \mathrm{C}$. Dark purple needles [m.p. $160-167^{\circ} \mathrm{C}$ (decomp)]. Anal. Found: C, 60.48; H, 4.99. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{CoS}_{2}$ calcd.: $\mathrm{C}, 60.66$; $\mathrm{H}, 4.81 \%$.

Structure of 2. The structure of 2 was determined by single-crystal X-ray analysis [4]. The ortep drawing of $\mathbf{2}$ is given in Fig. 1, together with some selected bond angles and the bond distances of 2.

Adduct 2 has a unique structure, as described in the following two points: (1) the hydrocarbon moiety bridges between metal (Co) and sulfur (S) of the metalladithiolene ring without breaking the $\mathrm{Co}-\mathrm{S}$ bond $(\mathrm{Co}-\mathrm{S}(1)=2.201(2) \AA, \mathrm{Co}-\mathrm{S}(2)=$

Fig. 1. ortep drawing of adduct 2 (Thermal ellipsoids at 50% probability; H atoms are omitted for clarity). Selected bond distances (\AA) and bond angles (${ }^{\circ}$): $\mathrm{Co}-\mathrm{S}(1), 2.201(2) ; \mathrm{Co}-\mathrm{S}(2), 2.238(2) ; \mathrm{Co}-\mathrm{C}(5)$, $2.031(4) ; S(1)-C_{b}(1), 1.788(5) ; S(2)-C_{b}(2), 1.749(5) ; S(1)-C(7), 1.839(4) ; C_{b}(1)-C_{b}(2), 1.390(6) ; C(5)-$ C(6), 1.550(7); C(2)-C(3), 1.294(8); S(1)-Co-S(2), 91.7(1); S(1)-Co-C(5), 83.3(1); S(2)-Co-C(5), 95.2(1); $\mathrm{Co}-\mathrm{S}(1)-\mathrm{C}_{\mathrm{b}}(1), 102.8(1) ; \mathrm{Co}-\mathrm{S}(2)-\mathrm{C}_{\mathrm{b}}(2), 101.8(2) ; \mathrm{Co}-\mathrm{S}(1)-\mathrm{C}(7), 100.1(2) ; S(1)-\mathrm{C}_{\mathrm{b}}(1)-\mathrm{C}_{\mathrm{b}}(2), 118.6(3) ;$ $S(2)-C_{b}(2)-C_{b}(1), 122.4(4) ; C(1)-C(7)-C(4), 94.2(4)$.
$2.238(2) \AA$) (This is the marked difference between the cases of 2 and of reported bis(dithiolato)metal complexes ($\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$, and Pt) $[1,2]$ in which the hydrocarbon bridges between two sulfur atoms of two different dithiolene rings), and (2) in adduct 2, Co and S are bridged by $\mathrm{C}(5)$ (edge carbon) and $\mathrm{C}(7$)(bridge carbon) of $\mathrm{C}_{7} \mathrm{H}_{8}$ in norbornene form.

Adduct 2 has a piano-stool structure. The central metal is coordinatively saturated, in contrast with the penta-coordinative structure of the free complex 1. The dithiolatometal ring is folded at two sulfur atoms and the angle of the planes consisting of metal-S-S and of S-S-C-C is 16° for 2.

Spectral data of 2. The following spectral data of adduct 2 can be reasonably assigned according to the structure determined by single-crystal X-ray analysis. ${ }^{1} \mathrm{H}$ NMR($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta=1.46$ (dd, $1 \mathrm{H}, \mathrm{H}_{6 \text {-endo }}, J_{6 \text {-endo-5 }}=6.8, J_{\text {gem }}=$ $14.3 \mathrm{~Hz}), 2.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6 \text {-exo }}, J_{\sigma_{\text {-exo-1 }}}=4.6, J_{\text {gem }}=14.3 \mathrm{~Hz}\right), 2.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, J_{7-1}\right.$ $=1.9 \mathrm{~Hz}), 2.77\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{1}, J_{1-7}=1.5, J_{1-2}=3.0, J_{1-6-\text { ex }}=4.6 \mathrm{~Hz}\right), 3.40(\mathrm{br}$. $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5-\text { endo }}, J_{5-4}=1.1, J_{5 .-6-\mathrm{endo}}=6.8 \mathrm{~Hz}\right), 4.98\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 5.65 (dd, $\left.1 \mathrm{H}, \mathrm{H}_{3}, J_{3.4}=3.0 \mathrm{~J}_{3-2}=5.7 \mathrm{~Hz}\right), 5.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{2}, J_{2-1}=3.0, J_{2-3}=5.7\right.$ $\mathrm{Hz}), 6.77\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H}\right.$ at $\left.\mathrm{C}_{\mathrm{b}}(4), J=7.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}\right), 6.96\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H}\right.$ at $\mathrm{C}_{\mathrm{b}}(5), J=$ $7.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}$), 7.28 (dd, $1 \mathrm{H}, \mathrm{H}$ at $\mathrm{C}_{\mathrm{b}}(3), J=7.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}$), and 7.55 (dd, $1 \mathrm{H}, \mathrm{H}$ at $\left.\left.\mathrm{C}_{\mathrm{b}}(6), J=7.5 \mathrm{~Hz}, J=1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right] \mathrm{NMR}\left(67.94 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta=$ $27.0\left(\mathrm{~s}, \mathrm{C}(5)\right.$ of $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right), 39.9\left(\mathrm{C}(6)\right.$ of $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right), 46.6\left(\mathrm{C}(1)\right.$ of $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right), 58.5(\mathrm{C}(4)$ of $\mathrm{C}_{7} \mathrm{H}_{8}$), $77.2\left(\mathrm{C}(7)\right.$ of $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right), 87.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 121.3\left(\mathrm{C}_{\mathrm{b}}(4)\right)$, $128.5\left(\mathrm{C}_{\mathrm{b}}(5)\right), 129.3$ (C(3)(olefinic) of $\left.\mathrm{C}_{7} \mathrm{H}_{8}\right), 129.4\left(\mathrm{C}_{\mathrm{b}}(6)\right)$, $130.7\left(\mathrm{C}_{\mathrm{b}}(3)\right)$, $133.3\left(\mathrm{C}_{\mathrm{b}}(1)\right)$, 134.6 (C(2)(olefinic) of $\mathrm{C}_{7} \mathrm{H}_{8}$), and $159.5\left(\mathrm{C}_{\mathrm{b}}(2)\right)$. MS (70 eV): $\mathrm{m} / \mathrm{z} 356$ ($\mathrm{M}^{+}, 4 \%$), and $264\left(M^{+}-\mathrm{C}_{7} \mathrm{H}_{8}, 100 \%\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\mathrm{nm})(\log \epsilon) 235$ (4.17), 278 (4.25), 323 (4.02), 435 (3.07), and 519 (2.96).

Mechanism of adduct formation. Skeletal carbon rearrangement or shift of hydrogen (or hydride) should take place to form 2 from Q. For the elucidation of the reaction mechanism we prepared deuterium-labeled quadricyclane as follows: the compound was prepared by a Diels-Alder reaction of cyclopentadiene- d_{6} (deuterium-content, 60%) with trans-1,2-dichloroethylene [5], followed by dechlorination [6] and cyclization [7] according to literature methods. The deuterated \mathbf{Q} has 70% of ${ }^{1} \mathrm{H}$ content (averaged content) at the edge positions (marked as O in Scheme 1), and $39 \%{ }^{1} \mathrm{H}$ content (averaged content) at the bridge and the bridgehead positions (marked as Δ in Scheme 1). The analysis of ${ }^{1} \mathrm{H}$ NMR spectra of the adducts from deuterated Q and 1 gives the following results: (1) two geminal

Scheme 1.

Scheme 2.
hydrogens at the edge (bonded to $\mathrm{C}(6)$) in adduct 2 have the same ${ }^{1} \mathrm{H}$ content as that at the bridge in the deuterated Q and (2) two bridgehead hydrogens have different ${ }^{1} \mathrm{H}$ contents. These results strongly suggest that only one skeletal rearrangement is involved and that no hydrogen atom shift takes place in the formation of the adducts. The addition of Q to 1 can be described as the following stepwise process (Scheme 2): (1) the nucleophilic attack of Q to the metal results in the formation of $\mathrm{Co}-\mathrm{C}$ bond, carbenium ion in the $\mathrm{C}_{7} \mathrm{H}_{8}$ moiety, and negatively charged metalladithiolene ring; and (2) the skeletal carbon rearrangement occurs to form a more stabilized carbenium ion, which forms a bond with a negatively charged sulfur atom of the dithiolene ring. The mechanism in which Q approaches 1 from the 4 -membered ring-side can be excluded, as the 4 -membered ring-side approach requires the shift of a hydrogen atom to produce 2.

Acknowledgements. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas on Organic Unusual Valency (No. 02247102) and a Grants-in-Aid for Scientific Research (Nos. 02640406 and 03640464) from the Ministry of Education, Science and Culture of Japan, and by the Asahi Glass Foundation.

References and notes

[^1]
[^0]: Correspondence to: Dr. M. Kajitani or Dr. A. Sugimori, Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioi-cho 701, Chiyoda-ku, Tokyo 102, Japan.

[^1]: 1 G.N. Schrauzer and V.P. Mayweg, J. Am. Chem. Soc., 87 (1965) 1483.
 2 M. Kajitani, M. Kohara, T. Kitayama, T. Akiyama and A. Sugimori, J. Phys. Org. Chem., 2 (1989) 131.

 3 R.F. Heck, Inorg. Chem., 7 (1968) 1513.
 4 Crystal data for adduct $2\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~S}_{2} \mathrm{Co}\right)$, Formula weight 356.37: triclinic, space group $P \overline{1}, a=$ $10.722(4), b=12.518(5), c=5.980(3) \AA, \alpha=93.70(4), \beta=94.62(4), \gamma=111.18(3)^{\circ}, U=742.2(6) \AA^{3}$, $Z=2, D_{\mathrm{c}}=1.595 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.572 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=14.125 \mathrm{~cm}^{-1}$ for Mo- K_{α}, Observed reflections 2467, $R=0.0464 ; R_{\mathrm{w}}=0.0482, F(000) 736,2 \theta_{\text {max }}=60.0^{\circ}$, Crystal dimensions $=0.12 \times 0.12 \times 0.20$ mm , total reflections $=4862$, Indep. Reflect. $=3084$, Obsd.Criteria $=F_{0} \geq 3 \sigma\left(F_{0}\right)$, No. of Param. $=$ 259. Apparatus used RIGAKU AFC- 5 , Mo- $K_{a}(\lambda=0.71068 \AA$), ω scan technique.

 5 L. Schmerling, J.P. Luvisi and R.W. Welch, J. Am. Chem. Soc., 78 (1956) 2819.
 6 R.K. Summerling and R.R. Umhoefer, J. Am. Chem. Soc., 61 (1939) 3016.
 7 G.S. Hammond, P. Wyatt, C.D. Deboer and N.J. Turro, J. Am. Chem. Soc., 86 (1964) 2532.

